Tensor Products of Commutative Banach Algebras
نویسنده
چکیده
Let AI, be commutative semlslmple Banach algebras and 1 02 A2 be their projective tensor product. We prove that, if 10 2 is a group algebra (measure algebra) of a locally compact abelian group, then so are A 1 and A2. As a consequence, we prove that, if G is a locally compact abelian group and A is a comutatlve semi-simple Banach algebra, then the Banach algebra LI(G,A) of A-valued Bochner integrable functions on G is a group algebra if and only if A is a group algebra. Furthermore, if A has the Radon-Nikodym property, then, the Banach algebra M(G,A) of A-valued regular Borel measures of bounded variation on G is a measure algebra only if A is a easure algebra.
منابع مشابه
Arens-irregularity of tensor product of Banach algebras
We introduce Banach algebras arising from tensor norms. By these Banach algebras we make Arensregular Banach algebras such that tensor product becomes irregular, where is tensor norm. Weillustrate injective tensor product, does not preserve bounded approximate identity and it is notalgebra norm.
متن کاملHomomorphism Weak amenability of certain Banach algebras
In this paper we introduce the notion of $varphi$-commutativity for a Banach algebra $A$, where $varphi$ is a continuous homomorphism on $A$ and study the concept of $varphi$-weak amenability for $varphi$-commutative Banach algebras. We give an example to show that the class of $varphi$-weakly amenable Banach algebras is larger than that of weakly amenable commutative Banach algebras. We charac...
متن کاملOn the character space of vector-valued Lipschitz algebras
We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...
متن کاملMultiplication operators on Banach modules over spectrally separable algebras
Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module. We study the set ${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$. In the case $mathscr{X}=mathcal{A}$, ${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$. We s...
متن کاملThe Higher-dimensional Amenability of Tensor Products of Banach Algebras
We investigate the higher-dimensional amenability of tensor products A ⊗̂ B of Banach algebras A and B. We prove that the weak bidimension dbw of the tensor product A⊗̂B of Banach algebras A and B with bounded approximate identities satisfies dbwA ⊗̂ B = dbwA+ dbwB. We show that it cannot be extended to arbitrary Banach algebras. For example, for a biflat Banach algebra A which has a left or right...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004